Линейна алгебра
Линейна алгебра е дял на математиката, изследващ линейните пространства, обикновено с краен или изброим брой измерения, както и линейните изображения (линейните категории) между такива пространства. Това включва изучавенето на прави, равнини и подпространства, но засяга и свойствата, общи за всички линейни пространства.
Линейна алгебра
Множеството от точки с координати, удовлетворяващи дадено линейно уравнение, образуват хиперравнина в n-мерно пространство. Условията, при които множество от n хиперравнини се пресичат в единствена точка. Те са една от основните цели на изследванията в линейната алгебра. Тези изследвания възникват първоначално с цел решаването на системи линейни уравнения с няколко неизвестни, които е лесно да бъдат представени под формата на матрици и вектори.[1][2][3]
Линейна алгебра
Линейната алгебра заема централно място както в чистата, така и в приложната математика. Например, абстрактната алгебра възниква чрез отстраняване на някои от аксиомите за линейните пространства, което дава възможност за значителни обобщения на изводите на линейната алгебра. Функционалният анализ изучава теорията на линейните пространства при безкраен брой измерения. В съчетание с математическия анализ линейната алгебра дава възможност за решаване на линейни системи от диференциални уравнения.
Линейна алгебра
Методи на линейната алгебра се използват също в аналитичната геометрия, техниката, физиката и останалите природни науки, информатиката и обществените науки, най-вече в икономиката. Тъй като апаратът на линейната алгебра е много добре развит, понякога нелинейни математически модели се апроксимират чрез линейни.
- Линейна алгебра
- Аналитична геометрия